Article 16313

Title of the article

INVESTIGATION OF THE FREQUENCY DEPENDENCE
OF THE NANOSTRUCTURES CAPACITY BASED ON SIO2-SNO2 

Authors

Averin Igor' Aleksandrovich, Doctor of engineering sciences, professor, head of sub-department of nanoand
microelectronics, Penza State University (40 Krasnaya street, Penza, Russia), micro@pnzgu.ru
Igoshina Svetlana Evgen'evna, Candidate of physical and mathematical sciences, associate professor, sub-department of natural sciences and technical disciplines, Kuznetsk Institute of Information and management technologies branch of Penza State University (57A Mayakovsky street, Kuznetsk, Penza region, Russia), sigoshina@mail.ru
Karmanov Andrey Andreevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), micro@pnzgu.ru 

Index UDK

539.21, 621.315.592

Abstract

Background. Development of multisensor systems for qualitative and quantitative analysis of the gas composition of the environment with high sensitivity and low power consumption is an important task for the oil and gas industry, medicine, etc. The use of the electric perturbing effects with variable frequency for a given operating temperature can increase the sensitivity and selectivity of the multisensor systems elements. The purpose of the study is controlled changing of the nanostructures conductivity and capacity based on tin dioxide due to conditions for obtaining maximum sensitivity and selectivity of sensors.
Materials and methods. The multisensors sensitive elements are SiO2-SnO2 nanostructures containing different amounts of tin dioxide obtained by sol-gel technology. The atomic force microscopy, infrared spectroscopy, automated test benches are used for the study of nanostructures.
Results. The frequency dependence of the SiO2-SnO2 nanostructures capacity at different mass fraction of tin dioxide is researched. It was fixed that the frequency range from 100 Hz to 100 kHz observed frequency dependence of the power law with an exponent of capacity n = 0,3-0,5 followed by saturation at high frequencies.
Conclusions. Capacity of nanostructures based on SiO2-SnO2 is determined by the conditions of obtaining, including the mass fraction of tin dioxide, the migrated polarization and protons drift in the percolation cluster of adsorbed water. Capacity growth of nanostructures with increasing mass fraction of tin dioxide is probably associated with the type of morphological structure. 

Key words

sol-gel technology, nanostructures, tin dioxide, silicon dioxide, capacity, research.

Download PDF
References

1. Averin I. A., Moshnikov V. A., Nikulin A. S., Pecherskaya R. M., Pronin I. A. Datchiki i sistemy [Sensors and systems]. 2011, no. 2, pp. 24–27.
2. Sysoev V. V. Mul'tisensornye sistemy raspoznavaniya gazov na osnove meta-looksidnykh tonkikh plenok i nanostruktur: dis. d-ra tekhn. nauk [Multisensor systems of gaz identification on the basis of oxide thin layers and nanostructures: dissertation to apply for the degree of the doctor of engineering sciences].Saratov,2009,364 p.
3. Gracheva I. E., Moshnikov V. A. Izvestiya Rossiyskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena [Bulletin of Russian State Pedagogical University named after A.I. Gertsen]. 2009, no. 79, pp. 100–107.
4. Gracheva I. E., Moshnikov V. A. Izvestiya SPbGETU «LETI».Ser. «Fizika tverdogo tela i elektronika» [Bulletin of Saint Petersburg Electrotechnical University LETI, Series Solid state physics and electronics].2008,no.6,pp.19–24.
5. Karpova S. S., Gracheva I. E., Moshnikov V. A. Izvestiya SPbGETU «LETI». Ser. «Fizika tverdogo tela i elektronika» [Bulletin of Saint Petersburg State Electrotechnical University LETI, Series Solid state physics and electronics]. 2010, no. 4, pp. 3–7.
6. Averin I. A., Karmanov A. A., Pecherskaya R. M., Pronin I. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physics and mathematics sciences]. 2012, no. 2 (22), pp. 155–162.
7. Moshnikov V. A., Gracheva I. E., Pronin I. A. Nanotekhnika [Nanotechnology]. 2011, no. 2, pp. 46–54.
8. Averin I. A., Pecherskaya R. M., Pronin I. A. Nano- i mikrosistemnaya tekhnika [Nanoand microsystem technology]. 2011, no. 11, pp. 27–30.
9. Averin I. A., Pronin I. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physics and mathematics sciences]. 2012, no. 2 (22), pp. 163–169.
10. Averin I. A., Aleksandrova O. A., Moshnikov V. A., Pecherskaya R. M., Pronin I. A. Nano- i mikrosistemnaya tekhnika [Nano- and microsystem technology]. 2012, no. 7, pp. 12–14.
11. Moshinkov V. A., Gracheva I. E. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta [Bulletin of Ryazan State Radiotechnical University]. 2009, no. S30, pp. 92–98.
12. Moshnikov V. A., Gracheva I. E., Karpova S. S., Pshchelko N. S. Izvestiya Sankt- Peterburgskogo gosudarstvennogo elektrotekhnicheskogo universiteta «LETI» [Bulletin of Saint Petersburg State Electrotechnical University LETI]. 2010, no. 8, pp. 27–32.
13. Averin I. A., Karpova S. S., Moshnikov V. A., Nikulin A. S., Pecherskaya P. M., Pronin I. A. Nano- i mikrosistemnaya tekhnika [Nano- and microsystem technology]. 2011, no. 1, pp. 23–25.
14. Osnovy vodorodnoy energetiki pod red. V. A. Moshnikova i E. I. Terukova [Fundamentals of hydrogen energetics edited by V.A. Moshnikov and E.I. Terukov]. Saint Petersburg: Izd-vo SPbGETU «LETI», 2011, 288 p.
15. Vasil'ev R. B. Tonkie plenki geterostruktury na osnove nanokristallicheskikh oksidov metallov dlya gazovykh sensorov: avtoref. dis. kand. khim. nauk [Thin films of a heterostructure on the basis of nanocrystalline metal oxides for gaz sensors: author’s abstract of dissertation to apply for the degree of the candidate of chemical sciences]. Moscow, 2001, 21 p.

 

Дата создания: 28.08.2014 14:05
Дата обновления: 29.08.2014 10:48